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EXECUTIVE SUMMARY

A MOBILE CONCRETE LABORATORY
TO SUPPORT QUALITY CONCRETE,

TECHNOLOGY TRANSFER,
AND TRAINING

Introduction

This report is a summary of work performed by the Mobile

Infrastructure Materials Testing Laboratory (MIMTL) as a part

of the Joint Transportation Research Program (JTRP) through

SPR-3858 and details its use for field testing concrete bridges

and concrete and asphalt pavements. The project was intended

to support the engineering investigations of other projects as

identified in this report.

The MIMTL was designed as a 14-foot trailer to be towed to

plants and jobsites using a pickup truck and has essential equipment

for performing a wide range of tests on fresh and hardening con-

crete as well as asphalt. It has been used for three main applications:

internally cured (IC) concrete, high early strength (HES) concrete

patching, and asphalt tack coats (chip seal).

Findings

The MIMTL safely and effectively provided support and

guidance to:

N Multiple graduate students and INDOT research projects with

zero workplace accidents and zero near misses while attending

different types of jobsites during forty-six operational days.

N Help ready-mix suppliers successfully implement field-produced

internally cured concrete as part of SPR-3708. This concrete

was tested at the plant and in the field, and results indicate

that the supplied internally cured concrete represents a high-

quality product. One of the biggest challenges is in the con-

trol and testing of aggregate moistures.

N Evaluate high early strength patching materials used as part

of SPR-3905. It was found that the temperatures observed in

the field were high and significant dosages of admixtures

were used, resulting in potential sulfate balance issues that

limited flexural strength.

N Conduct site visits related to concrete pavement performance

as part of SPR-3708. Information gathered was used to

investigate aging for measures of strength and durability and

provided typical levels of variation associated with test methods,

with particular focus on concrete pavement construction.

N Evaluate a new test for chip sealing as part of SPR-3801. The

results demonstrated that electrical measurements show

promise in applicability to determining chip seal curing times.

Implementation

The Mobile Infrastructure Materials Testing Laboratory

(MIMTL) has been used successfully to verify the value obtained

from concrete purchased by the Indiana Department of

Transportation (INDOT) for use in bridge decks, pavements,

patches, and curbs. Additionally, its implementation has provided

the opportunity for hands-on training of INDOT personnel and

contractors in how to improve concreting practices and increase

service life. With the implementation of the MIMTL, new tech-

nologies can be rolled out that provide opportunities to fine-tune

specifications and best practices.
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1. INTRODUCTION

This report is a summary of work performed by the
Mobile Infrastructure Materials Testing Laboratory
(MIMTL) as a part of the Joint Transportation Research
Program (JTRP) through SPR-3858. The development
of the MIMTL began in February of 2014 and it
became fully operational by June of 2014. The MIMTL
was deployed in the field for a total of 46 days. This report
describes the activities of the MIMTL as of December
2015. The MIMTL was involved in the field testing of
concrete bridges (Barrett, 2015), concrete pavements
(Spragg, 2016; Spragg, Todak, Shagerdi, Zavattieri, &
Weiss, 2016; Todd, 2015; Todd, Olek, & Weiss, 2016),
and asphalt pavements (Montoya, Haddock, & Weiss,
2016). This report describes the development of the
mobile testing laboratory and provides some examples
of how the MIMTL was used. The main highlights of
the MIMTL’s implementation are as follows:

N The MIMTL’s high mobility and extensive inventory
of research equipment allowed graduate students and
researchers to conduct field studies on a wide range of
infrastructure materials to accomplish the research objec-
tives of their specific projects. More extensive details of
the background, objectives, methods, findings, results
and implementation from those projects can be found in
the respective reports for those projects;

N The MIMTL supported a culture of safety that allowed
students to work safely on jobsites in the State of Indiana
ranging from roadside interstates, rural country roads, to
ready-mix batching plants, often around heavy equip-
ment, traffic, and in close quarters. During the operation
of the MTIML described in this report, there were zero
workplace accidents, and zero near misses reported;

N The MIMTL assisted in technology transfer between
the infrastructure materials experts at Purdue University
and contractors and suppliers in the State of Indiana.
A wide range of new technologies evaluating infrastructure
materials were utilized on a variety of projects. On each
of these projects, MIMTL researchers educated industry
personnel (contractors and suppliers), agency personnel
(INDOT and local agencies), and consultants within the
state. The MIMTL attended demonstrations with INDOT
district and central office personnel to further highlight
capabilities as well as the emerging technologies;

N The MIMTL was established a joint investment with
partners in industry, local agencies, and INDOT. Operated
by the Joint Transportation Research Program and the
Local Technical Assistance Program as pay-per-use
model, means this sustainable venture will offer services
to researchers, industry, or agency entities that can cover
the pay-per-use costs.

2. RESEARCH MOTIVATION

A large portion of the INDOT budget is spent on the
construction and maintenance of the infrastructure which
includes concrete and asphalt pavements, concrete bridge
structures, concrete curb, gutter and sidewalks, and
other asphalt materials. Concrete is tested on site to
ensure that the concrete brought to the site and placed
in the concrete structure or pavement is similar to

the concrete that is specified. If the proportions of the
as-built concrete differ from the specified concrete,
the as-built concrete may not provide the anticipated
performance and value for INDOT (Barrett, 2015).
This is especially true when it comes to durability since
minor variations in water content have a larger impact
on durability properties than they do strength (Castro,
Spragg, Kompare, & Weiss, 2010). As such, field test-
ing for quality control, qualification, and verification is
important. In addition, several new testing procedures
are being developed that can save time, money or
provide additional data; however, deploying these new
technologies in practice is often difficult (Castro et al.,
2010; Graveen, 2001; Miller, 2014; Spragg, Bu, Snyder,
Bentz, & Weiss, 2013). The MIMTL was also used
to investigate other infrastructure materials that are
commonly used in the State of Indiana.

Testing materials on site however has a unique set of
challenges. INDOT has dramatically reduced the number
of people onsite and institutional knowledge is lost
when highly experienced employees retire or move to
new positions within INDOT. In addition, with new
contractors and a changing contractor workforce, INDOT
is in a constant battle to make sure that in addition
to training its workforce the contracting personnel are
fully prepared for the task of providing high quality
concrete.

This final report describes a project that attempts to
develop strategies to address the aforementioned con-
cerns. This report describes the implementation of a
Mobile Infrastructure Materials Testing Laboratory
(MIMTL). This work also places a focus on providing
INDOT with support for the implementation of new
technologies. The MIMTL has been used to verify that
INDOT is able to obtain high value for the concrete
being purchased for use in bridge decks, pavements,
patches and curbs. Specifically, the work focuses on
helping to improve concreting practices that improve
the service life of concrete infrastructure. The project
investigated opening times to brushing operations for
chip seal pavements. Secondly, the project provided
hands-on training which was used to improve the quality
of concrete as well as to train personnel (INDOT or
INDOT contractors). Finally, new technologies can be
rolled out providing opportunities to fine-tune specifi-
cations and best practices so they can be most successful.

3. OVERVIEW AND CAPABILITIES OF THE
MIMTL

The MIMTL began construction in February 2014.
The equipment consisted of a 14-foot box trailer and
a 2015 Chevrolet 3500, as shown in Figure 3.1. This
versatile combination was chosen to allow for high
mobility within the State and ease of setup, in areas
ranging from production yards to the shoulder of state
highways and interstates. The capacity was also sized to
allow transporting specimens and constituent material
back to the Pankow Materials Laboratory at Purdue
University for additional testing.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2016/18 1



The 14-foot trailer was outfitted with shelving systems,
equipment mounting points, specimen storage, and proper
personal protective equipment (PPE). This included
proper lighting and reflectivity gear for roadside and
night-time roadside work. The MIMTL was outfitted with
power generation and water storage capabilities, in case
these items were needed on-site. Interior pictures of the
MIMTL are shown in Figure 3.2.

The MIMTL offered a full range of infrastructure
materials testing, with emphasis on field testing of con-
crete and concrete constituents. This includes but is not
limited to: aggregate properties and specifically light-
weight aggregate testing, fresh property testing of con-
crete, equipment to make a wide range of standard
concrete specimens, equipment to monitor temperature
and early age properties, mechanical testing, durability
testing, and lastly equipment to obtain hardened samples
from in-place elements.

A laptop computer was included to allow for cal-
culations and data analysis to be conducted on the
MIMTL, and for recommendations to be made in real
time. The computer also contained videos detailing
standard operating procedures relating to infrastructure
materials testing, allowing it to be used as a training
tool. The MIMTL was outfitted with a weather station,
to monitor local climatic conditions during the course
of a MIMTL visit. Air temperature, relative humidity,
wind speed and UV index were monitored as necessary.
Time-lapse photography for documentation of con-
struction processes and for use in training purposes was
also possible, based on suggestions from JTRP (Lavrenz
& Bullock, 2015).

Based on work during 2013, it was determined that
aggregate properties testing are vital to the implementa-
tion of high quality concrete (Barrett, Miller, & Weiss,
2013). The MIMTL was outfitted with equipment for

aggregate sieve analysis, moisture control, and specific
gravity. The MIMTL also was equipped for utilization
of ITM 222, a method to determine lightweight aggre-
gate properties for use in internal curing (Miller et al.,
2014). This method is currently being evaluated for
extension for use in coarse lightweight aggregate as well
as conventional weight aggregate. Aggregate properties
are one of the important parameters to control to ensure
quality concrete.

The MIMTL was outfitted to gather a wide variety
of data on fresh properties of concrete. This includes
slump, air content, unit weight, and yield. Furthermore,
as part of a national pooled-fund study on air entrain-
ment and air entrainment quality, the MIMTL con-
tained the Super Air Meter (SAM; Todak, 2015). Sensors
were included for temperature and internal relative
humidity measurement, which can assist in assessing
thermal control and maturity for early opening to
traffic (Graveen et al., 2009b). Embeddable concrete
strain gages are also available for use in deflection or
strain testing on an as needed basis. The MIMTL
contained a device known as water/cement meter which
served to estimate the water/cement ratio of fresh mix-
tures. This device is a product of James Instruments. It
was not able to produce repeatable results in the field,
therefore it was not used to obtain any useful data about
the water/cement ratio of the concrete mixtures in any
of the projects that the MIMTL supported.

The MIMTL included equipment for making con-
crete specimens, including a wheelbarrow, shovels, trowels,
rods, sample molds, etc. A wide range of specimens
molds were included as well, ranging from standard
flexural beams to standard test cylinders.

The MIMTL contains equipment for measuring
the mechanical properties of concrete at early ages.
The equipment was designed in such a way that it can

Figure 3.1 The Mobile Infrastructure Materials Testing Laboratory pictured at the Center for Aging Infrastructure in 2014.
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be quickly checked for calibration when the lab is set up
and can be used to provide early age modulus, i.e.,
elastic modulus at early ages, flexural, or split tensile
strength. The equipment was particularly designed such
that it can be used for the measurement of early age and
developing properties. The MIMTL is also equipped
with embeddable strain gages for measuring the
shrinkage of as-delivered concrete as well as a dual
ring for measuring the early age cracking resistance of
the as-delivered concrete. This equipment is connected
to equipment for data acquisition and temperature con-
trol. Non-destructive equipment for measuring strength,
such as the Windsor Pin, was provided due to the poten-
tial value that these non-destructive methods add.

Durability testing is available on the MIMTL, most
notably the use of resistivity. Resistivity is a tool that
can assess the consistency and durability of a concrete
mixture (Spragg et al., 2013). Coupled with the laptop
and a tool to estimate the pore solution chemistry, the
formation factor of concrete mixtures can be deter-
mined (Spragg, Qiao, Barrett, & Weiss, 2016; Weiss,

Barrett, Qiao, & Todak, 2016). Embedded sensors were
also available, which can be used with fresh mixtures,
and are currently being evaluated to simplify the testing
procedure (Castro et al., 2010).

The MIMTL was also equipped to gather specimens
from in-place concrete elements. This include equip-
ment and PPE to core-drill, hammer-drill, and saw
concrete in the field. Many of these could utilize water-
less technology to prevent sample contamination with
water.

Towards the end of the operational time-period, the
MIMTL assisted with asphalt projects. This included
observing standards of practice, measuring emulsion
depth, and measuring the electrical properties (resis-
tance and impedance) of the emulsion.

4. OPERATIONAL MODEL AND TIMELINE

The MIMTL was established as a shared facility
between INDOT, LTAP, Purdue University, and industry
partners to defray costs. The MITML was operated out

Figure 3.2 Interior pictures of the Mobile Infrastructure Materials Laboratory pictured early in its operation in 2014.
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of the Pankow Materials Laboratory at Purdue Uni-
versity, and was established as a cost-per-use Purdue
cost center. This model will hopefully help to keep the
MIMTL sustainable into the future. The cost-per-day
covered the truck, trailer, equipment use, and techni-
cian time. Future users of the MIMTL include research-
ers, agency, and industry members that can cover the
associated cost per use.

The MIMTL was staffed by a laboratory technician,
Mr. Cameron Wilson, for the 2014 and 2015 construc-
tion seasons. Other graduate and undergraduate research
assistants worked on the MIMTL both providing
assistance and to complete their respective projects and
research.

During the 2014 and 2015 construction seasons, the
MIMTL was deployed for a total of 46 days, ending
operations in September of 2015. The timeline is sum-
marized in Table 4.1. There are six main categories of
site visits:

N Internally Cured (IC) bridges and trial batches;

N High Early Strength (HES) patches and trial batches;

N Concrete Pavement Performance site visits;

N Asphalt tack coats (chip seal);

N Specimen retrieval for analysis at the Pankow

Laboratory;

N MIMTL Demonstrations to INDOT District and

Central Office Personnel.

The following chapters will provide a summary of
the first four categories of site visits. The chapters will
provide a quick overview of the project, detail how the
MIMTL was used by researchers on-site to obtain
and test specimens, and provide some examples of the
data that was obtained. More in-depth discussion of
motivations, methods, data analysis, conclusions, and
recommendation can be found in the respective theses
and reports of the projects that are discussed. The goal
of this report is to illustrate how the MIMTL helped to
accomplish data gathering procedures. The fifth cate-
gory of MIMTL use involved retrieving specimens in
the field for further analysis at the Pankow Laboratory.
Since this category only utilized MIMTL equipment to
obtain specimen to analyze in accordance with proce-
dures outside the scope of standard civil engineering
evaluation, the details are not provided here. For
further details regarding those findings, you can see the
respective thesis. For the salt interaction study, this is
Thomas (2016) and for the acid interaction study is
Ding (2015). Likewise, the demonstrations will not be
detailed as they simply involved tours to INDOT
district or Central Office personnel.

TABLE 4.1
Operational timeline for the MIMTL during the 2014 and 2015 construction seasons.

Date Grant # No. of Days Location Description

6/22/2014 207237 1 Hanna, IN IC Bridge Deck

8/13/2014 207898 1 Crown Point, IN HES Patches on US 30

8/20/2014 207720 1 Crown Point, IN HES Patches on US 30

9/3/2014 207720 1 Harrison, OH IC Bridge Deck Trial Batch

9/8/2014 207720 1 Crown Point, IN HES Patches on US 30

9/16/2014 205833 0.5 West Lafayette, IN Salt Interaction Slab Cast at CAI

9/17/2014 207720 1 Dyer, IN HES Patches on US 30

9/19/2014 207720 0.33 West Lafayette, IN Mobile Lab Demonstration

9/23/2014 207720 1 Frankfurt, IN HES Trial Batch

9/24/2014 205833 0.5 West Lafayette, IN Salt Interaction Slab Cast at CAI

9/24/2014 207720 0.5 West Lafayette, IN HES Patches on US 52

9/25/2014 207720 1 Lafayette, IN HES Trial Batch

10/6/2014 205833 0.5 West Lafayette, IN Salt Interaction Slab Cast at CAI

10/7/2014 207720 1 Dyer, IN HES Patches on US 30

10/16/2014 207646 0.5 West Lafayette, IN Salt Interaction Slab Cast at CAI

10/20/2014 207646 0.5 West Lafayette, IN Salt Interaction Slab Cast at CAI

10/21/2014 207720 1 Lafayette, IN HES Trial Batch

10/22/2014 207646 0.5 West Lafayette, IN Salt Interaction Slab Cast at CAI
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5. INTERNALLY CURED BRIDGES

5.1 Background

The use of internal curing, has a well-documented
use at improving the service life of concrete elements
(e.g., Bentz & Weiss, 2011; Castro, Spragg, & Weiss, 2012;
De la Varga et al., 2014; Di Bella, Villani, Phares,
Hausheer, & Weiss, 2012; Henkensiefken, Bentz, Nantung,
& Weiss, 2009; Henkensiefken, Castro, Bentz, Nantung,
& Weiss, 2009). Internally cured bridge decks have pre-
viously been constructed in the State of Indiana, and
evaluated by Purdue University (Barrett et al., 2015;

Di Bella et al., 2012). This section will discuss how
the MITML was used to evaluate the construction
of additional internally cured bridge decks during the
past construction seasons. This chapter will specifically
focus on the visits to B-37021 (SR 46 over I-74 in the
INDOT Seymour District) and B-37022 (SR 61 over
I-64 EB/WB in Vincennes District). Both of these con-
tracts for Internally Cured High Performance Con-
crete (ICHPC) involved deck replacement. The mobile
lab provided support and guidance to the ready-mix
suppliers and contractors responsible for the construc-
tion of the internally cured bridges, as well as INDOT

TABLE 4.1
(Continued)

Date Grant # No. of Days Location Description

10/23/2014 206481 1 Lafayette, IN Pavement Performance on Earl Ave.

11/5/2014 207237 1 Knox, IN IC Bridge Deck

11/11/2014 207898 2 Harrison, OH IC Bridge Deck

11/13/2014 207720 0.33 Crawfordsville, IN Mobile Lab Demonstration

11/19/2014 207720 0.33 West Lafayette, IN Mobile Lab Demonstration

11/26/2014 204797 0.5 Lafayette, IN Coring for Sealer Study US 231

12/2/2014 205833 0.5 West Lafayette, IN Sealing Salt Interaction Slabs at CAI

12/3/2014 205833 0.5 West Lafayette, IN Sealing Salt Interaction Slabs at CAI

3/17/2015 204797 1 Fishers, IN Coring for Sealer Study

3/31/2015 207898 1 Indianapolis, IN HES Trial Batch

4/7/2015 206805 1 Lafayette, IN Install Specimens for Acid Interaction Study

4/14/2015 205833 1 West Lafayette, IN Coring Salt Interaction Slabs at CAI

4/15/2015 206695 2 Fort Branch, IN IC Bridge Deck Trial Batch

4/21/2015 207237 1 Wheatfield, IN IC Bridge Deck

5/28/2015 205833 1.5 West Lafayette, IN Coring Salt Interaction Slabs at CAI

6/10/2015 207237 1 North Judson, IN IC Bridge Deck

6/30/2015 206481 2 Bloomington, IN Pavement Performance on I69

7/13/2015 206695 2 Fort Branch, IN IC Bridge Deck

7/21/2015 206805 1 Lafayette, IN Retrieve Specimens for Acid Interaction Study

7/21/2015 206481 2 Bloomington, IN Pavement Performance on I69

8/5/2015 207000 2.5 Lebanon, IN Chip Seal

8/16/2015 207000 1.5 Auburn, IN Chip Seal

9/1/2015 207000 1 Mentone, IN Chip Seal

9/3/2015 207644 1 West Lafayette, IN Coring Salt Interaction Slabs at CAI

9/8/2015 207644 1 West Lafayette, IN Coring Salt Interaction Slabs at CAI

9/10/2015 207644 1 West Lafayette, IN Coring Salt Interaction Slabs at CAI

9/23/2015 207000 1.5 Farmland, IN Chip Seal

TOTAL 46
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personnel that were responsible for quality assurance
testing. Of specific interest, was the aggregate proper-
ties of the prewetted fine lightweight aggregate (FLWA).
The MIMTL attended the trial batches for these inter-
nally cured decks, was present at the batch plant the
morning of the deck pour, and visited the deck site
during construction to gather samples. The MIMTL
utilized the newly developed ITM 222 utilizing a centri-
fuge for characterization performing quality control
testing on lightweight aggregates (Miller, 2015; Miller
et al., 2014). Samples were also made from concrete
mixtures placed in the bridge deck to analyze for hard-
ened mechanical and durability testing.

5.2 Overview of Work Conducted

The work of the mobile laboratory on this type of job
can be broken down into three main components: The
trial batch, the morning of the pour at the batch plant,
and the day of the pour at the bridge deck.

Before construction of the deck, the MIMTL would
attend the trial batch. The trial batch process is impor-
tant, as it allows INDOT to qualify the mixture to make
sure that it meets or exceeds expectations in terms of
material performance, and is chance for the supplier to
demonstrate that they are capable of properly batching
an ICHPC mixture. The trial batch stage is an oppor-
tunity for INDOT to assess the fresh properties and
take samples for later age properties. Samples were
collected for strength and durability testing.

The MIMTL assisted in the testing of the FLWA in
accordance with ITM 222, which is a rather new test

that many concrete suppliers have not had the oppor-
tunity to use. MIMTL personnel would offer guidance
and help if needed with the batching systems, as some
batching systems have difficulty utilizing high absorp-
tion aggregates, such as FLWA. Testing of FLWA is
shown in Figure 5.2.

At the trial batch, the MIMTL would take air, slump,
temperature, and cylinders alongside INDOT and sup-
plier personnel. MIMTL personnel would provide
advice on the test method and mixture modification.
Typical testing and training opportunities from the
trial batch are shown in Figure 5.3.

On the day of the deck pour, the MIMTL would
arrive early to the batch plant and assist with aggregate
property testing, similar to that shown in Figure 5.1.
The MIMTL would then transition to the jobsite
and observe the construction sequence and construc-
tion practices, assess fresh properties, and gather samples
for hardened analysis, examples of this process is shown
in Figure 5.4.

5.3 B-37021: SR 46 over I-74 in the Seymour District

The MIMTL, personnel Dr. Timothy Barrett and
Cameron Wilson attended the trial batch for this bridge
on September 3, 2014. Aggregate properties were taken
after arriving on-site. The batch plant personnel had
difficulties with the batching software, most likely due
to the high absorption capacity of the FLWA. Com-
mercial batch software typically have ‘‘safeguards’’
maximums on absorption capacity (Barrett, 2015). After
a delay of approximately two hours, the trial batch

Figure 5.1 The Mobile Infrastructure Materials Testing Laboratory beginning the day of deck cast by testing aggregate
properties at the ready mix batch plant.
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proceeded without a problem. This demonstrates the
efficacy of a trial batch, as it helps to discover these
complexities and develop solutions before the day of
the deck cast.

The deck cast took place on November 11, 2014, and
was attended by the same Purdue personnel. Aggregate
properties were measured the morning of the cast, fresh
properties were recorded on a series of trucks through-
out the day, and hardened samples were analyzed
for production variability, and later-age strength and
durability properties. The conclusions can be found in
the PhD dissertation of Dr. Timothy Barrett (2015).
A final look at the bridge deck can be seen in Figure 5.5.

5.4 B-37022: SR 61 over I-64 in the Vincennes District

The trial batch for this deck took place at Irving
Materials Incorporated in Fort Branch, Indiana. The trial
batch was attended by Dr. Timothy Barrett, Alex Coyle,
Cameron Wilson, and Nathan Todd on April 16, 2015.
Aggregate properties were taken after arriving on-site.

The batch plant personnel had difficulties with the batch-
ing process, specifically weighing the materials within the
specified tolerances. The automatic and manual batching
systems could not weigh the material within the specified
tolerances. Material was thrown away on several occa-
sions. A few observations were observed regarding this
problem. First, small batches, such as this 3 cubic feet
batch, have difficulty meeting batch tolerances due to
such a small amount of material. Second, as FLWA has a
much different density than normal-weight aggregate,
sometimes it is required to slightly modify the batching
software parameters. Specifically, the parameter that
controls the amount of time the clam-shell remains open
(Barrett, 2015). After batching, the mixture did not meet
air and slump requirements. Three trucks were batched
before the materials were batched within tolerance and
the mixture was accepted.

The ICHPC mixture was a ternary blended mixture,
with a minimized paste content. The design mixture
proportion is shown in Table 5.1.

Figure 5.2 Testing of fine lightweight aggregate for use in an internally cured high performance concrete mixture, showing
(a) specific gravity testing, (b) ITM 222 centrifuge method, (c) obtaining an oven-dry sample, and (d) measuring oven–dry mass.
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The deck pour was conducted on the June 14, 2015.
The MIMTL arrived early to the batch plant to mea-
sure aggregate properties, summarized here in Table 5.2.
This included specific gravity, absorption, surface mois-
ture, and total moisture of the lightweight fine aggre-
gate. The total moistures for the normal weight aggregates
are also given.

After the aggregate testing was completed at the
batch plant, the MIMTL traveled to the location of the
deck for field testing. This deck was poured in two
phases, with the second phase happening some months
later. The MIMTL was only present for Phase 1 of this
deck.

Air content measurements and measurements using
the Super Air Meter (SAM) were conducted on six trucks
throughout the deck. Companion cylinders from each
truck cast as well, for evaluation of later-age proper-
ties. The air content and SAM number are summarized

in Table 5.3. Observations from testing of the SAM
indicate that it can take approximately twenty minutes
to conduct a SAM test, which is longer than a standard
air test. While the SAM number is related to the
spacing factor and air void quality (Todak, 2015), the
time investment makes it a difficult test for quality
control. However, this test might still be very beneficial
in a mixture qualification stage.

Cylinder specimens were also made from each of the
six trucks. These cylinders were tested for compressive
strength and resistivity. Figure 5.6 illustrates 7 day and
28 day compressive strength for the trucks tested. The
coefficient of variation in strength in the entire day’s
cast was an average 15.5%, with the 28 day strength
approximately 20% higher than the strength at 7 days.
Figure 5.7 illustrates the sealed resistivity as a function
of time for the day’s casting operation. The 7 day
coefficient of variation was 12.0%.

Figure 5.3 Testing at trial batches for including training opportunities shown in (a) and (b), (c) air content testing, and (d)
hardened samples to take back to assess later age properties.
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Figure 5.4 Testing on site at bridge location shows (a) concrete pumping apparatuses, (b) concrete placement in bridge deck, (c)
making hardened samples for later age testing, and (d) Super Air Meter testing.
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TABLE 5.1
Mixture design for internally cured high performance concrete
bridge deck on B-37022, weights given in SSD condition.

Material SSD Weight (lbs)

Cement 443

Slag Cement 117

Silica Fume 25

Fine Aggregate 644

Fine Lightweight Aggregate 393

Coarse Aggregate 1758

Water 244.0

Air Content (%) 6.5

TABLE 5.2
Aggregate properties on the day of the internally cured high
performance concrete deck cast for B-37022.

Fine Lightweight Aggregate

GLWA
1.759

Absorption (%) 20.50

Surface Moisture (%) 6.82

Total Moisture (%) 28.71

Fine Aggregate

Total Moisture (%) 4.43

Coarse Aggregate

Total Moisture (%) 1.75

TABLE 5.3
Mixture design for internally cured high performance concrete
bridge deck on B-37022, weights given in SSD condition.

Truck Air Content (%) SAM

1 6.0 –

3 5.5 0.44

5 4.7 0.39

9 8.1 0.23

11 9.5 0.20

13 7.3 0.35

AVERAGE 6.9 0.32

ST DEV 1.79 0.103

Figure 5.5 Picture of finalized internally cured high performance bridge deck on SR 46 over I-74.
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6. HIGH EARLY STRENGTH CONCRETE
MIXTURES

6.1 Background

The MIMTL assisted in site visits and field work
for SPR-3905: Concrete Patching Materials and Tech-
niques and Guidelines to Hot Weather Concreting
(Todd, 2015). Concrete patches work on an accelerated
project time-line, and are typically concrete mixtures
that must gain opening strength in approximately four
to five hours. These mixtures are typically referred to as
High Early Strength (HES) mixtures. These mixtures
are characterized by low w/c, high cementitious materials
content, and high dosages of accelerating admixtures.
The combination of these different techniques to accelerate

property development in concrete materials can present
some challenges, some of which were investigated using
the MIMTL.

6.2 Overview of Work Conducted

The MIMTL attended trial batches, highway and
interstate rapid repair projects to evaluate HES mix-
tures using time-temperature history, flexural strength
development, and sample collection for evaluation back
at Pankow Laboratory.

Tasks at trial batches included testing of aggregate
properties, and assistance with INDOT in development
of a maturity curve, in accordance with ITM 402
(INDOT, 2015). To assist with this, a large number of

Figure 5.6 7 day (blue) and 28 day (red) compressive strength showed an average coefficient of variation of 15.5%.

Figure 5.7 Sealed curing resistivity measurements from the six trucks throughout the casting of the internally cured high
performance concrete bridge deck.
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concrete flexural beams, shown in Figure 6.1a, would
be cast to measure flexural strengths at various ages.
While specimens made by INDOT personnel were
subjected to normal curing conditions, as described by
ITM 402, Purdue University researchers would cast
beams and subject them to temperature matched curing
(TMC). TMC is the method in which the tempera-
ture of the specimens was elevated and matched the
temperature that had previously been reported in HES
patches utilizing industrial heating pads and electrical
blankets, shown in Figure 6.1b.

These temperature profiles were designed to mimic
the temperature seen in the concrete patches, which
could often reach in excess of 60 uC. The motivation is
explained in more detail by Todd (2015). At various
ages ranging from 4 to 24 hours, the flexural strength
of these specimens were measured using a Humboldt
portable beam breaker in the mobile lab. Later-age
strength was measured at the Pankow Materials
Laboratory.

When visiting a pavement project site, Purdue Uni-
versity utilized the MIMTL in a similar fashion. Using
the safety lights and nighttime PPE, the MIMTL would
be setup on a section of roadway to examine the
behavior of HES mixtures in the field. Typically,
temperature data and flexural strengths were mea-
sured during site visits. Using thermocouples and data
loggers housed in the MIMTL, temperatures of the
concrete inside the patches as well as cast beams were
recorded. In addition, as done at trial batches, many
concrete beams were cast and subjected to normal
curing and temperature matched curing conditions.
Flexural strengths were measured at ages ranging
from 4 to 24 hours.

6.3 Data Collected

Research regarding high early strength concrete mix-
tures utilized two main types of data gathered by the
MIMTL, temperature history of beams and patches,
and flexural strength development. Temperatures were
recorded using Measurement Computing’s USB-5104
High-Accuracy, 4- Channel Thermocouple Data Log-
ger, with Type-T thermocouples. Thermocouples were
placed more than 1 foot into the concrete pavement
patches to minimize edge effects. Thermocouples were
placed at mid-depth and mid-span of concrete beams.
Temperatures were recorded every minute for the
duration of the site visit to an accuracy of +/ - 0.01 uC.
For measuring flexural strengths of concrete beams, a
Humboldt H-3033A, 18’’ (span) Third-Point Loading
Concrete Beam Tester was utilized and stationed in the
MIMTL.

An example of temperature data gathered by the
MIMTL is illustrated in Figure 6.2. These results indi-
cate on both warm and cool nights, HES concrete
patches can reach temperatures in excess of 50 to 60 C.
Furthermore, the temperature in concrete beams are
much lower than that of concrete in the patches.

An example of flexural strength data obtained by
the MIMTL is illustrated in Figure 6.3. The specimens
marked Air cured are curing utilizing standard INDOT
practices outlined in ITM 402. These specimens exhibit
an expected strength gain as a function of time. Speci-
mens marked as TMC were cured utilizing heat blankets
to obtain temperature histories similar to that of patch
temperatures, such as those shown in Figure 6.2. These
specimens show high initial strength gain, as expected
because the temperature accelerates the reaction.

Figure 6.1 A large number of flexural beams being cast at (a) trial batch for development of maturity curve, and (b) pavement
patch site visit for evaluation of strength gain in temperature matched curing regime utilizing industrial heating blankets.
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However, at approximately the 6 hour time period, the
TMC specimens exhibit stunted strength development.
At later ages, the strength of TMC specimens is much
lower than that of standard curing beams.

7. CONCRETE PAVEMENT PERFORMANCE

7.1 Background

One of the major tenets of statistical quality con-
trol is that the overall quality of a produced product is
linked to the variation and consistency (e.g., Darroch,
1968; Derman & Ross, 1997; Venable, 1970). This is
extended to concrete pavements, where literature has
reported concrete pavements with lower variation exhibit
a longer and more consistent service life (Graveen
et al., 2009a; Hoerner & Darter, 2000). Since prior research
conducted during concrete pavement construction in
Indiana (Graveen, 2014; Graveen et al., 2009a), several
new test methods have gained a significant traction
in the concrete community as well as an increasing
emphasis being placed on the durability of the concrete
being placed during construction.

7.2 Overview

The MIMTL was used to assist SPR-3708 in the
investigation of the variation of performance measures
and variation seen during in-progress construction. More
detailed discussion of the project objectives, method,
and conclusions can be found in the final report
for SPR-3708 (Spragg, Todak, Shagerdi, 2016). The
MIMTL assisted in this with investigation with four
primary objectives:

N Provide the investigating personnel with the proper PPE

and all necessary equipment to conduct tests, manufac-

ture specimens, and assist in early age and fresh property

testing;

N Assess production variability through a series of different

standardized test methods and procedures that are

undergoing development in a large scale production

environment;

N Investigate the impact of aging on both mechanical and

durability test methods;

N Assist with technology transfer activities with both

on-site INDOT and consultant quality assurance testing

personnel and contractor and supplier personnel.

This chapter will specifically focus on site visits
to two in-progress construction sections on I-69 in
southwest Indiana. The MIMTL was used to support
research personnel during the site visit. The testing
personnel arrived on-site at the beginning of the day of
production. Samples were taken throughout the day,
from different batches during production. The concrete
was sampled from directly in front of the paver, such as
shown in Figure 7.1 taken immediately before sam-
pling. The samples in this portion of the study were
kept in a sealed condition. The two site visits used
typical paving concretes. Both mixtures used a w/cm of
0.42, and mixture 1-1 had a low paste content and
21.5% fly ash by mass. Mixture 1-2 had a moderate
paste content consisting of straight cement.

Figure 6.2 Temperature development for US 30 HES project
on warm and cool nights for beams and patches.

Figure 6.3 Flexural strength development in air cooled beams
(blue squares) and temperature matched curing (TMC) beams.
TMC beams exhibit a rapid strength gain at early ages, but
show stunted strength gain at later ages.
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7.3 Data Collected

The first batch after arriving for the day was utilized
to produce twenty-five flexural beam specimens. Figure 7.2
presents results for sealed cured flexural strength as a
function of time. Recall, both mixtures had a w/cm of
0.42, while mixture 1-1 has a lower paste content and
21.5% fly ash by mass, while mixture 1-2 is a straight
cement mixture. Mixture 1-1 shows a higher initial
strength, attributed to its lower paste content, and more
significant strength development over time, attributed
to the inclusion of the SCM. Figure 7.2b presents
results that are normalized by the 7 d measurement of
flexural strength. Surprisingly, it looks like the two

mixtures exhibit the same strength development at early
ages, i.e., before 7 d, while later ages the mixture with
SCM shows a more significant gain. The average CV
was approximately 4.6%, slightly lower than the single-
operator testing variation. This is expected, as measure-
ments were done on specimens made from the same
batch, which would not include production variation.

The first batch after arriving for the day was utilized
to produce eight 4x8 cylinder specimens. The specimens
were cast, and sealed in two layers of 6 mil plastic bags
on-grade, and at an age of 24 h were taken back to the
laboratory. Table 7.1 presents results for the average of
four sealed cured specimens tested at 7 d and 28 d for
split tensile strength. Opposite of the trend of flexural

Figure 7.2 Sealed flexural strength, R, in a third point bending test shown vs age, in (a) values of psi and (b) normalized by the 7
d value. Mixture 1-1, a low paste and 21.5% fly ash mixture, shows higher strength gain over time compared to 1-2, a straight
cement mixture.

Figure 7.1 A photograph of the material in front of the paver, directly before sampling.

14 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2016/18



strength, mixture 1-1 showed a lower initial strength.
However, the 28 d measurement for mixture 1-1 was
higher. Interestingly, at both ages the mixtures were
only approximately 3% different from each other. This
would suggest these two mixtures did not have a signi-
ficant difference in split tensile strength. Furthermore,
the CV of the samples was approximately 12% for all
the testing ages. This was nearly 2.5 times the testing
variation described by Graveen et al. (2009b), but
consisted of a sample size quite a bit larger than this this
study.

As part of the study, the Super Air Meter (SAM) was
investigated. This test method is an active area of
development (see superairmeter.com as of June 2016)
that is currently under development that has shown
good correlation with assessing air void distribution
(Ley & Tabb, 2013; Todak, 2015). The test method
works by utilizing a slightly modified traditional pres-
sure air meter that utilizes five pressure levels instead
of the traditional single pressure level. The method
can calculate the total air content, as well as the
using pressure differentials to calculate what is termed
a ‘‘SAM number’’, in units of psi. The associated cal-
culations to determine these values are done by an
onboard logic unit and are displayed directly on the
screen. The SAM number has shown good correlation
with an ASTM spacing factor (Ley & Tabb, 2013) and
the critical degree of saturation (Todak, 2015). The
SAM is a good test in this respect, because it can be
used on fresh concrete, and can be completed in ten
to twenty minutes. It is worth noting, that subsequent
iterations of this equipment currently in develop-
ment utilize a pressured air tank such that the testing
personnel does not need to spend time pressurizing the
chamber. This is noted as reducing the testing time
significantly.

The site visits in this study evaluated the SAM
throughout a day of production. At four points evenly
spaced throughout the day, samples were taken from
directly in front of the paver. Samples were taken at the
same time that INDOT personnel took their quality
assurance samples. Figure 7.3 shows the comparison
between the total air contents measured by the SAM,
shown in closed symbols, and the INDOT measured
quality assurance samples, shown in the open symbols.
On average, there was less than a 0.2% difference in
absolute air content between the INDOT measured
value and the value using the SAM meter. This dif-
ference is less than the multi-operator standard deviation.

The SAM meter could be used in place of a standard
air meter without any required conversions.

In additional to the total air content, the SAM can
also the determined the aforementioned property of
‘‘SAM Number’’. The SAM number is determined from
multiple pressure levels in the SAM chamber. Cor-
relations have shown a SAM Number below 0.2 psi was
shown by Tenesi, Kim, Beyene, and Ardani (2015) to be
ideal in preventing freeze/thaw damage. Todak has
shown that higher SAM numbers correlate to a lower
critical degree of saturation and reduction in estimated
service life (Todak, 2015).

The site visits evaluated the SAM number on the
same mixtures evaluated for air content as described
above. The SAM was tested concurrent with INDOT
acceptance testing for total air. The results are pre-
sented in Figure 7.4 indicate that throughout a pro-
duction during a typical day, mixture 1-1 showed an
average value of 0.33 with a standard deviation of
0.13, while mixture 1-2 had an average value of 0.13
with a standard deviation of 0.07. The estimated testing

Figure 7.3 Air content determined using the Super Air Meter
(SAM) or INDOT testing personnel. Average difference of
less than 0.2% between equipment is within the testing
variation.

Figure 7.4 Super Air Meter number, shown to have good
correlation with freeze/thaw resistance for different sample
indices taken from a day of production. Samples with fly ash
and lower paste content showed a higher average SAM
number.

TABLE 7.1
Splitting tensile results for site visits, in SSD lb/yd3.

Age Mixture ID 1-1 1-2

7 d Average (psi) 380 389

CV (%) 11.6 12.0

28 d Average (psi) 425 413

CV (%) 11.9 10.9
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standard deviation for the SAM number is 0.11 psi, so
the variation noticed in these measurements is not far
outside the testing variation of the test method. Further-
more, assessing the pore distribution for freeze thaw
resistance is a somewhat variable activity. Another
popular test method, ASTM C457, has a multi operator
coefficient of variation of 20% (ASTM C 457, 2013).
The sample with a lower paste content fly ash mixture,
1-1, was noticed to have a higher SAM number.

However, as Todak describes, SAM number, or
any measure of air void distribution and spacing, is
only one parameter that influences the freeze thaw
durability of a concrete material (Todak, 2015). It is
argued using sorption a sorption based model, that
measures of the total volume of air, and the rate at
which the air voids are filled in with absorbing fluid are
more important in determining the estimated life cycle
of a concrete material (Todak, Lucero, & Weiss, 2015;
Weiss, Tsiu Chang, & Todak, 2016). Based on the
amount of time it takes to conduct a typical SAM test
and the variation not significantly outside the testing
variation, the authors believe the SAM is a worthwhile
test for mixture qualification, but does not lend itself well
to regular quality acceptance testing. The authors believe
that it would be more worthwhile to control total air and
a measure of transport properties or consistency.

Resistivity was also evaluated as part of the site
visits conducted during this study. The specimens were
sampled from the same batch of the concrete sampled
for SAM testing. For each batch, three samples were
made. Immediately after casting, the specimens were
sealed in two layers of 6 mil plastic bags. The specimens
were kept in a sealed condition and taken to the lab at
an age of 24 h. At an age of 7 d, the specimens were
demolded, tested, and returned to the bag and tested
at an age of 28 d. The temperature of the specimens
were measured with an infrared thermometer and the
resistivity was tested according to AASHTO TP119
(2015).

Figure 7.5 shows resistivity measurements on sealed
specimens conducted as part of the first category of site
visits. The solid line represents the average of all the
measurements, while the dashed lines represent +/- 1,2,
and 3 testing standard deviations from the mean. The
testing standard deviation was determined from the
single-operator testing CV described by Spragg, Castro,
Nantung, Paredes, and Weiss (2012). Figure 7.5a and
Figure 7.5b are measurements conducted at 7d, while
Figure 7.5c and Figure 7.5d are 28 d measurements.
Two specimens were identified as outliers with resistiv-
ity values nearly double that of the other two specimens
in the set. The specimens lost an average of 0.25% of

Figure 7.5 Sealed resistivity for (a) 7 d Mixture 1-1, (b) 7 d Mixture 1-2, (c) 28 d Mixture 1-1, and (d) 28 d Mixture 1-2. Solid lines
indicate the average of all the samples measured, with ranges shown for +/- 1, 2, 3 times the testing standard deviation from the
average.
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their 7 d mass between the age of 7d and 28 d, while
other specimens fluctuated +/- 0.02%. A recently round
robin has suggested that a value of 0.4% of mass loss
is correlated to outliers, but the paste content of those
structural concrete mixtures tended to be a little higher
(Spragg, Coyle, Fu, Amirkhanian, & Weiss, 2016). This
suggests that the amount of initial water in the mixture
might be a better measure to judge mass loss. Regard-
less, specimens that lose mass are correlated to higher
resistivity measurements and specimens that lose mass
an order of magnitude higher than other specimens in
the set can be considered as outliers. The use of embed-
ded samples that can ensure better protection against
moisture loss are being investigated.

Between 7 d and 28 d, mixture 1-1 increased resi-
stivity by a factor of 2.1, while mixture 1-2 increased by
a factor of 1.5. While these two cementitious systems
exhibit different pore solution properties, the inclusion
of fly in mixture 1-1 will result in an expected delay of
pore refinement, similarly to that seen with strength
development in the previous section. This highlights the
importance of evaluating, at least during the mixture
qualification stage, the mixture at a later age, such at
28 d or even 91 d. While this does present slightly more
problems during the preplanning stages of a project, i.e.
requiring two or three months before production, this
will ensure the mixtures will obtain the desired level of
performance during their service life. By testing at a
later age, measures need not be taken that ensure the
high performance at an early age, e.g., a lower w/cm,
which might increase the price of the mixture. However,
by conducting a 3 d or 7 d test, targets can be set for
production and quality assurance, where it can be assu-
med that the same degree of aging occurs. If significant
deviation from the targets are noticed during produc-
tion, either a change in materials occurred which affected
the measured resistivity, most namely the alkali con-
tents of the cement changed, or the production varia-
tion and control of the mixture needs investigated.
The non-destructive nature of resistivity measurements
means the specimens could be kept and evaluated at a
later age if disputes arise.

The average variation seen in the resistivity measure-
ments at 28 d for mixture 1-1 was an average of 5.0%

and for mixture 1-2 an average of 6.7%. The indivi-
dual sublots tested were shown an average deviation
from the mean of 0.7 SD for mixture 1-1 and 1.0 SD
for mixture 1-2 at 7 d. This deviation increased
when tested at 28 days. For all but one of the sublots
tested, the variation of the three-specimen set was
below the testing variation, 4.4% CV. Therefore, the
variation seen between sublots corresponds to produc-
tion variation.

8. ASPHALT TACK COATS

The MIMTL was used to aide in the establishment of
a sound evaluation technique for quantitatively deter-
mining chip seal curing times using asphalt emulsion.
Under SPR-3801, the MIMTL performed field work at

five Indiana State Roads pavement sections (Montoya
et al., 2016). Chip seal projects were located on SR 19
(approximately 3 miles north of Mentone), SR 8
(approximately 5 miles west Auburn), SR 1 (approxi-
mately 1mile north Farmland) and SR 39 (near Lizton
and near Lebanon). The field work was aimed to
explore the capability of the proposed electrically-based
approach to quantify chip seal curing times under
various field conditions.

The field research was used to monitor the curing
process, electrical property development and mechan-
ical strength of the fresh seal coat. To a great extent, the
curing process is a function of the portion of water that
evaporates. In this context, a fresh core sample was
taken from the roadway to record the water evapora-
tion rate. Electrical measurements were performed
using a hand-held electrical device that was employed
to examine whether the curing time could be deter-
mined using alternating electric current. The chip seals
were swept at intervals in order to evaluate when the
asphalt emulsion had gain enough stiffness to withstand
uncontrolled traffic or brooming. Additionally, chip
seal materials, climatic conditions, types of equipment
and engineering practices were documented, and
detailed finding will be available in the final report
for SPR-3801 (Montoya et al., 2016). More detailed
information can be found in M. Montoya’s (2016)
thesis.

Asphalt emulsion binders and cover aggregate make
up the finished chip seal system. At the five shadowed
projects, the type of bitumen emulsion used was AE-90S.
Table 8.1 presents the aggregate types applied at each
pavement section. Also, asphalt emulsion and aggre-
gate samples were collected at each location for further
material property characterization.

Chip seal curing times vary upon different climatic
conditions. The MIMTL mounted weather station and
a thermocouple embedded on the pavement were uti-
lized to record the ambient temperature, ambient rela-
tive humidity, wind speed, cloudiness and pavement
temperature, at 15 minutes intervals throughout the
duration of the site visits at the shadow projects, sum-
marized in Table 8.2.

Plywood pads (4 in x 8 in) covered by aluminum foil
were placed on the existing surface prior to the spraying
and chipping, as shown in Figure 8.1a. After rolling, the

TABLE 8.1
Aggregate types for the tack coat shadow projects.

Aggregate

Pavement Section Type Size

SR19 Mentone Stone SC 16

SR8 Auburn Dolomite SC 16

SR1 Farmland Stone SC 11

SR 39 Lizton Gravel SC 16

SR 39 Lebanon Gravel SC 16
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pads were extracted as a core sample. These specimens
were set on a balance to monitor the water evaporation
rate under the particular climatic conditions, shown in
Figure 8.1b.

Since there is wind-induced error in the field mass
measurements, the readings were logged at 10 seconds
intervals, allowing to develop a linear regression analysis
to fundamentally estimate the water evaporation rate
over time. Figure 8.2 presents the mass measurements
recorded and regression model generated for the data
obtained at SR 8 in Auburn.

A LCR meter device was used to characterize the
electrical properties of the residual material over curing
time. This handheld test equipment is capable of mea-
suring the electrical resistance at a specific frequency.
The electrical properties were monitored on the in-place
chip seal, utilizing a two-point embedded electrode probe,
as shown in Figure 8.3.

The electrical resistance measurements were recorded
at 1 minute intervals. Figure 8.4 shows the electrical
resistance measurements logged at SR 39 in Lebanon,
as the tack coat cured. As noticed, a longer curing time

correlates to a higher electrical resistance, and electrical
measurements show great promise in quantifying the
amount of water loss.

Shear forces applied by brooms and uncontrolled traffic
to fresh seal coats were simulated to assess the potential
mechanical performance. An industrial broom, shown in
Figure 8.5 was used on chip seals at MIMTL site visits to
sweep the pavement at specific intervals. The dislodgement
potential was evaluated through visual inspections.

The chip seal operations of Fort Wayne, Greenfield,
and Crawfordsville INDOT Districts were surveyed.
MIMTL personnel spent five days with the chip seal
crews. In general, the construction practices within the
districts exhibit marginal variations. Example of the
observed operations are shown in Figure 8.6.

The present field work results are encouraging and
show that electrical measurements can be used to quan-
tify chip seal curing times. Further discussion and find-
ings will be available on the report under the SPR-3801
research program, Using Field Electrical Conductivity
Measurements for Scheduling Chip Seal Spreading/
Sweeping Operations (Montoya et al., 2016).

Figure 8.1 Tack coat testing, showing (a) aluminum wrapped plywood pad, prior to tack coat application, to allow for easy
extraction of core, (b) fresh extracted tack coat specimen placed on a balance to monitor mass loss.

TABLE 8.2
Climatic and pavement conditions during the tack coat site visits.

Pavement Section

Ambient Temperature

Range (uF)

Relative Humidity

Range (%)

Wind Speed Range

(mi/hr)

Prevalent

Cloudiness

Pavement Temperature

Range (uF)

SR19 Mentone 81.2–95.1 49.3–76.5 5.2–14.7 Sunny 77.0–91.4

SR8 Auburn 69.2–95.2 23.6–64.1 2.2–13.7 Sunny 68.0–86.0

SR1 Farmland 56.4–98.5 22.1–96.4 0.5–10.4 Sunny 66.2–98.6

SR 39 Lizton 60.3–76.6 56.5–91.5 2.4–9.7 Cloudy 64.4–86.0

SR 39 Lebanon 70.8–108.5 17.6–66.2 2.4–6.9 Sunny 75.2–93.2
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Figure 8.3 Embedded probe to measure the resistance of the in-place tack coat (a) shows the fixture and the embedded stainless
steel electrodes, and (b) is the probe embedded in the tack coat.

Figure 8.2 Mass loss as a function of curing time for chip seal core samples from SR 8 in Auburn. The linear regression fit is also
given.
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Figure 8.6 Examples of chip sealing operations observed in three INDOT districts.

Figure 8.4 Electrical resistance vs. curing time on SR 39 in Lebanon.

Figure 8.5 Shear force simulations using an industrial broom.
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9. SUMMARY AND CONCLUSIONS

This report is a summary of work performed by
the Mobile Infrastructure Materials Testing Labora-
tory (MIMTL) as a part of the Joint Transportation
Research Program (JTRP) through SPR-3858. This
report describes use of the mobile lab for testing the
field performance of internally cured concrete bridge
decks (Barrett, 2015), concrete pavements (Spragg,
Todak, Shagerdi, 2016; Todd et al., 2016), and asphalt
pavements (Montoya et al., 2016). The work described
in this report was intended to support the engineering
investigations of other projects as identified. The labo-
ratory was developed and implemented successfully,
leading to a laboratory that could be utilized to deploy
new technology in the field and provide training to
INDOT and industry personnel in an efficient and safe
manner.

The MIMTL assisted in the evaluation of the field
performance of internally cured bridge decks. Impor-
tant conclusions from this work are that aggregate
properties, especially those of the fine lightweight
aggregate, greatly influence the quality and consistency
of the supplied concrete. Some batching software has
‘‘safeguards’’ that prevent the input of high absorption
values of aggregates. Lastly, since lightweight aggregate
has different densities than normal weight aggregate,
clamshell opening times on batch plants might need
recalibration when producing concrete with lightweight
aggregate.

The MIMTL was utilized and essential to the success
of field evaluations of concrete patching projects on
Indiana interstates and highways. These projects operate
on accelerated timelines to accommodate overnight
lane closures. The concrete mixtures on these projects
are termed ‘‘High Early Strength’’ mixtures, because
they must meet opening to traffic strength criteria
anywhere from 4 to 8 hours. The main conclusions
from field evaluation that the MIMTL helped to eval-
uated are summarized in the final report for SPR-3905
as well as by Todd (2015). These conclusions are that
concrete temperature in patches can exceed 50 to 60 uC,
and high concrete temperatures coupled with the use
of high dosages of chemical accelerators can lead to
poisoned chemical reactions and negligible strength
development in high early strength mixtures.

Lastly, the MIMTL assisted in monitoring the con-
struction operations for chip sealing in three INDOT
districts, and observed consistent practices between
these three districts. The MIMTL helped to provide
field evaluation on the use of electrical-based sensors
for the use in chip seal scheduling operations. The
findings from this portion of the MIMTL’s work will be
provided in the final report for SPR-3801 (Montoya
et al., 2016).
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